Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1277585, 2023.
Article in English | MEDLINE | ID: mdl-38023885

ABSTRACT

Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.

2.
Plant Genome ; 12(2)2019 06.
Article in English | MEDLINE | ID: mdl-31290916

ABSTRACT

Schwabe [teleomorph: Gibberella zeae (Schweintiz) Petch] has been identified as a pathogen of soybean [ (L.) Merr.] causing seed, seedling damping-off and root rot in North America. A major quantitative disease resistance locus (QDRL) that contributed 38.5% of the phenotypic variance toward in soybean was previously identified through mapping of a recombinant inbred line (RIL) population derived from a cross between 'Wyandot' and PI 567301B. This major QDRL mapped to chromosome 8 to a predicted 305 kb region harboring 36 genes. This locus maps near the locus for soybean cyst nematode (SCN) and the locus contributing to seed coat color. Long-read sequencing of the region was completed and variations in gene sequence and gene order compared with the 'Williams 82' reference were identified. Molecular markers were developed for genes within this region and mapped in the original population, slightly narrowing the region of interest. Analyses of the hybrid genome reassembly using three previously published bacterial artificial chromosome (BAC) sequences (BAC56G2, BAC104J7, and BAC77G7-a) combined with RNA-sequencing narrowed the region making candidate gene identification possible. The markers within this region may be used for marker-assisted selection (MAS). There were 10 differentially expressed genes between resistant and susceptible lines, with four of these candidates also located within the genomic interval defined by the flanking markers. These genes included an actin-related protein 2/3 complex subunit, an unknown protein, a hypothetical protein, and a chalcone synthase 3.


Subject(s)
Disease Resistance/genetics , Fusarium/physiology , Glycine max/genetics , Plant Diseases/genetics , Chromosome Mapping , Chromosomes, Plant , Genome, Plant , Hybridization, Genetic , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Plant , Sequence Analysis, RNA , Glycine max/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...